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Abstract
We present a method that is based on the Ladd–Frenkel (LF) thermodynamic integration for the
study of the rigidity of networks of particles bonded together by short-ranged square well
attractive potentials. We show that, by taking the limit of the attractive range going to zero, the
celebrated Baxter limit, the degrees of freedom per particle of the system reduces to the fraction
of floppy modes, i.e. those modes associated with movements at constant bonding distance.
This method allows us to enumerate this fraction in a straightforward way and to calculate
precisely the entropy associated with the sampling of phase space due to these floppy modes.
In particular, we shall discuss how this quantity changes in the case of three (3D) and two
dimensions (2D).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Short range attractive systems have attracted a considerable
amount of interest in the last few decades, especially for
their applications in colloidal science [1, 2]. At high
density, they represented an important benchmark for glass
theory predictions that, for these systems, are highly non-
trivial [3–6]. At low density, a gel phase emerges when
the attraction between particles is strong enough, a fact that
has been interpreted as an arrested phase separation both in
numerical and experimental work [7–9]. Moreover, a lot
of protein systems have also been modeled by short range
interactions [10].

In numerical studies, among the potentials that have been
used, the square well model has proven to be particularly
useful. The fact that such a highly non-realistic potential can be
used to describe real systems, like colloids or proteins, relies on
the fact that, when the attractive range of the potential is much
shorter than the diameter of the particles, the properties of the
system are insensitive to the shape of the potential [11]. This
fact has been successfully used to interpret experimental results
for colloidal gels [8] as well as for protein systems [12, 13].

One of the main advantages of this model is represented by
the fact that the bonds are unambiguously defined. More
specifically, the potential energy is directly proportional to the
number of bonds.

Another important advantage is that, for square wells, the
study of the potential energy landscape (PEL) is particularly
simple. This approach, which has been successfully applied
to liquids and glasses, divides the PEL into basins around
minima [14–16]. After this step, the system can be described in
terms of the statistical properties of the minima and the basins.
Square well systems are a special case because their PEL is
not continuous. Each bonding pattern, however, is always a
minimum. In particular, if no bonds are formed or broken the
system is restricted to a minimum and to the sampling of its
basin. The only quantity that needs to be calculated is the
entropy associated with such a basin, i.e. the way the system
samples the phase space once it is restrained in a specific
minimum (or configuration) [17, 18]. To calculate this quantity
the Ladd–Frenkel (LF) method [19] for the calculation of the
free energy of solids has been used.

We begin by introducing a Hamiltonian H0 that does not
allow the formation or breaking of bonds. In other words,
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the system can evolve freely as long as all the bonds are
conserved. The LF method complements this interaction
with a harmonic term λ

∑
i (ri − r̄i )

2 centered around a
reference configuration (r̄1, . . . , r̄N ) acting on the particles in
the positions (r1, . . . , rN ).

The idea behind this method relies on the possibility
of performing a thermodynamic integration over λ from a
state of known free energy to the state where the harmonic
part of the Hamiltonian is not present (λ = 0). When
λ → ∞, each particle moves as a harmonic oscillator around
the reference state and the system behaves like an Einstein
solid. The unperturbed system is identified with a specific
initial bonding pattern and the result of the thermodynamic
integration provides an exact measure of the basin free energy.
No energy change is associated with the sampling of space
within the fixed bond pattern basin since the energy surface is
flat: consequently the only contribution to the basin free energy
is entropic. The basin entropy per particle in units of kB, σbasin,
can be formally written as [17, 20]

σbasin = −β fE (T, λ∞)+
∫ ln(λ∞)

−∞
λ

〈
∑

i

(ri − r̄i )
2

〉

λ

/

N d ln λ

(1)
where fE (T, λ) is the free energy of 3N harmonic oscillators
coupled by an elastic constant λ and 〈·〉λ is an ensemble
average at a fixed value of λ. The value λ∞ is chosen
such that the harmonic contribution is dominant. and thus
〈λ∑

i (ri − r̄i )
2〉λ ≈ 3

2 NkBT . The quantity 〈λ∑
i(ri − r̄i )

2〉λ
is evaluated via MC simulations, rejecting all moves which
modify the bond pattern.

In this paper we shall show how this approach can be
used to evaluate the fraction of floppy modes in networks of
bonded particles, a quantity that is related to the rigidity of
such networks. In general, floppy modes are defined as those
movements that do not change the potential energy of the
system. For particles with permanent square well bonds, all
the movements obey this definition. However, we shall see
that, when the range of the square well goes to zero, i.e. in
the Baxter limit [21], the number of degrees of freedom is
reduced to the rolling of particles on each other at constant
distance, which we interpret as the floppy modes for square
well systems. In order to characterize the rigidity, geometric
algorithms are often used to calculate the amount of floppy
modes [22]. In this work, however, we will present a method
that is based on the LF scheme. This method presents the
great advantage of unifying a direct counting of the fraction
of floppy modes with a thermodynamic integration that allows
direct calculation of the entropy associated with the sampling
of phase space due to these modes.

We shall begin our discussion by introducing a toy model
that can be exactly solved and that will give an indication of
the essence of the method. This simple model will then be
generalized to real particle networks in three (3D) and two
dimensions (2D).

2. A toy model: the dimer

Before performing the Ladd–Frenkel integration, we begin
our discussion on the enumeration of the floppy modes by

Figure 1. Exact result for the quantity 2βλ〈(r2 − r̄2)
2〉λ (2βλ〈r2〉 in

brief in the graph) for a single particle elastically bound to a
reference point with an elastic constant λ and restricted in a square
well of width � (see text for details). The horizontal lines represent
the large λ limit, i.e. the Einstein crystal, and the intermediate λ limit
representing the fraction of floppy modes. This case is in three
dimensions (3D). The cartoon is a pictorial representation of the
toy model.

introducing a toy model that will help in clarifying the whole
approach. We examine the behavior of two particles bonded
by a square well in three dimensions. Particle 1 is fixed at
the origin so that the degrees of freedom associated with the
center of mass are excluded. A second particle 2 is bonded
to the first by a square well permanent bond. This means
that the position of particle 2, r2, is always within a corona,
i.e. σ < |r1 − r2| < σ + �, where σ is the diameter of
the particles and � is the width of the corona. An Einstein
reference site acts at an arbitrary position r̄2 = (x, 0, 0) with
σ < x < σ + �. The model is represented pictorially in the
cartoon in figure 1.

The Hamiltonian of the two-particle system is

H = H0 + λ · (r2 − r̄2)
2 (2)

where λ is the elastic constant and H0 is the unperturbed
Hamiltonian that, in practice, enforces the bonding between
the two particles. For the 3D case the average displacement
〈(r2 − r̄2)

2〉λ can be calculated by

λ〈(r2 − r̄2)
2〉λ = − ∂

∂β
logZλ(β), (3)

where the generating (or partition) function Zλ(β) is

Zλ(β) = 2π

∫ d+�

d

e−βλ(r+x)2
(e−4βλr x − 1)

2βλ
r dr. (4)

The resulting λ dependence of 2βλ〈(r2 − r̄2)
2〉λ is shown in

figure 1 for three different values of �. In the harmonic limit,
i.e. λ → ∞, the quantity 2βλ〈(r2 − r̄2)

2〉λ goes to 3, the
total number of degrees of freedom, since in the harmonic limit
λ〈∑i (ri − r̄i )

2〉λ = 3
2 kBT .

Upon decreasing λ, the function decays in two steps to
zero. At intermediate values of λ a plateau develops with a
height of a value of two. The crossovers from 3 to 2 take
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place at λ1 ≈ (2/�)2 while the one from 2 to 0 at a value
of λ2 ≈ (2/σ)2. To interpret this behavior we recall that
for very large λ (λ > λ1) confinement is provided by the
harmonic potential. For λ2 < λ < λ1, confinement of the
harmonic potential has become larger than � and the bond
distance becomes the relevant quantity controlling the mean
square displacement. For λ < λ2, the confinement is originated
by the finite bond volume of the corona of width � and inner
surface 4πσ 2. This two-step crossover allows us to count the
number of modes which are connected to the sampling of the
bond width and the number of those which come from the
sampling of space at fixed interparticle distance. In particular,
the first crossover is �-dependent while the second one is �-
independent. The LF method can estimate not only the total
change in entropy but it is able to count and separate the
number of modes which are related to the sampling of the bond
distance (vibrational modes) from those which are related to
the sampling of the volume with rigid bonds (floppy modes).

In particular, approaching the Baxter limit, i.e. � → 0,
2βλ〈(r2 − r̄2)

2〉λ reaches a limiting form that goes to the
number of floppy modes. As we shall see later, in this limit
the thermodynamic integration expressed by equation (1) is
restricted only to those modes that are related to fixed bond
distance movements—the floppy modes—and this is the core
of the method we are discussing here.

We want now to test if the splitting of the mean square
displacement in the small � limit depends on dimensionality.
For this reason we extend the previous model to the 2D
case. As before, one disc is at the origin and cannot move
while the second one is forced to move in the attractive well
of the first one and cannot escape. An elastic term acts
between the centers of particle 2 and a reference point r̄2. The
Hamiltonian of the two-particle system is the same as described
by equation (2). Again, the mean square displacement λ〈(r2 −
r̄2)

2〉λ can be calculated by the generating function Zλ(β)

defined in equation (3). In three dimensions, however, the
angular part of the generating function could be explicitly
integrated, a task that cannot be performed in 2D. This
complicates the calculation of the integral expressed by

Zλ(β) =
∫ d+�

d
e−βλ(r2−r̄2)

2
d2r (5)

which has been performed numerically by Monte Carlo
integration.

The mean square displacement for three representative
values of � is presented in figure 2. The results confirm that, as
for the 3D case, a limiting function is achieved when � → 0.
Having changed the dimensionality of the system, the number
of degrees of freedom is now reduced to 2, one vibrational (the
movements along the line joining the centers of the particles)
and one floppy mode (the particles rotating around each other
at a fixed distance). As before, this division of the degrees of
freedom is reflected in the mean square displacement. When
the range goes to zero, only movements along the only floppy
modes are allowed. It is interesting to note that, different from
the 3D case, in two dimensions the limiting function presents
a peak roughly located at λ2 ≈ (2/d)2, a fact that enforces the
idea of a �-independent function with a specific form which is,

Figure 2. The same as figure 1 but in two dimensions (2D).

as we shall see, directly related to the entropy of the constant
distant movements, i.e. the floppy modes.

Summarizing, in both cases, there is just one bond in the
system, i.e. Nb = 1, and one particle, N = 1, since particle
1 is not moving. Since the number of floppy modes is 2 for
the 3D case and 1 for the 2D case, we can say that the fraction
of floppy modes can be inferred from the number of bonds per
particle that are present in the system by the formula

ff = d − Nb

N
(6)

where ff is the fraction of floppy modes and d is the
dimensionality of the system. The expression in equation (6)
coincides exactly with the plateau of the mean square
displacement. In the next section we shall consider the case
of several particles and we shall discuss if we can extend the
conclusions drawn here for a simple toy model to the real case.

3. The real case: network of particles

We begin by taking a system of N particles connected together
in a network characterized by a total number of bonds Nb.
This has been done by taking an equilibrated configuration
of particles interacting by a square well potential, above the
critical temperature. In particular, these configurations were
taken at a density ranging between ρ = 0.38 and ρ =
0.95, a reduced virial coefficient between B∗

2 = −0.40 and
B∗

2 = −0.69 and a range � = 10−3. The use of the square
well model is particular appropriate because the total number
of bonds in the system is directly related to the potential
energy by the relation Nb = −U . A percolating cluster
has been extracted and used as the initial configuration for
the LD integration. The number of particles in these initial
configurations ranges between N = 159 and 200. The
simulations were performed with a fixed center of mass and
this means that the three trivial infinite frequency floppy modes
associated with the translations have been eliminated. The fact
that the initial configuration is made of a single percolating
cluster guarantees that no contribution to the counting comes
from rigid rotations or translations of isolated clusters.

As discussed before, the simulations are performed by
a Monte Carlo scheme that refuses any step that involves

3



J. Phys.: Condens. Matter 20 (2008) 494241 G Foffi

Figure 3. The mean square displacement (2βλ〈∑i (ri − r̄i)
2〉λ/N)

from the reference points for a specific bonding pattern of
hard-sphere particles as a function of the elastic constant λ for
various values of the bond length �. At large λ the Einstein values is
reached. For intermediate values, a plateau develops with a height
equal to the fraction of floppy modes, 3 − Nb/N . This case is
characterized by Nb/N = 1.68 and N = 200.

the formation or breaking of bonds, i.e. the bonding pattern
conservation is enforced. The typical LF harmonic term
connects each particle at a position ri to its initial position, r̄i ,
by an elastic term as was done for the toy model (equation (2)).
The temperature is fixed to unity (β = 1) and does not
influence the results since no thermal fluctuations can actually
break a bond and a change of temperature would simply
renormalize the elastic constant λ. After a first equilibration
run, the quantity 2βλ〈∑i(ri − r̄i )

2〉λ/N , which enters in the
calculation of the entropy by equation (1), is calculated as a
function of the elastic constant λ.

In figure 3, the mean square displacement 2βλ〈∑i(ri −
r̄i )

2〉λ/N is plotted for various values of � for a 3D case. The
bonding pattern is the same for each run.

As for the toy model introduced in the previous section,
the shape of the curve shows two parts, one �-independent
and one �-dependent. Following equation (1), the area under
the 2βλ〈∑i (ri − r̄i )

2〉λ/N versus ln λ curve is a measure
of σbasin, the entropy associated with the sampling of space
at a fixed bonding pattern. The �-independent and �-
dependent parts of 2βλ〈∑i(ri − r̄i )

2〉λ/N give rise to two
different contributions to σbasin, which we can identify as the
floppy [23] �-independent and the vibrational �-dependent
part. As for the exactly solvable model, discussed before,
the �-independent part of the curve presents a plateau. As
clearly indicated in figure 3, the height of this plateau can
be interpreted as the fraction of floppy modes in the system,
as was defined by equation (6), i.e. f (3D)

f = 3 − Nb/N
(see figure 1), a value consistent with the existence of Nb

independent vibrational degrees of freedom. In fact, this
follows exactly the behavior that was found for the toy model.
This is particularly important since 2βλ〈∑i(ri − r̄i )

2〉λ/N
enters the expression for the free energy in LF thermodynamic
integration, equation (1).

Having tested that the observations for the toy model
extend to the real case in 3D, we can now test the 2D
case. Similar to what has been discussed above, we took

Figure 4. The same as figure 3 but in two dimensions (2D). In this
case the fraction of floppy modes is 2 − Nb/N . This case is
characterized by Nb/N = 1.51 and N = 207.

a configuration of discs interacting by permanent square
well bonds. The quantity 2βλ〈∑i(ri − r̄i )

2〉λ/N has been
calculated for the same bonding pattern at different values of
the interaction range � and the results are presented in figure 4.
As expected, we obtain the same behavior as in the 3D case.
For large values of λ the number of degrees of freedom per
particle is recovered, i.e. d = 2, while the usual plateau
emerges at intermediate values. The height of the plateau
is again the fraction of floppy modes per particle as directly
calculated from the numbers of bonds, i.e. f (2D)

f = 2 − Nb/N
(equation (6)). We can then confirm that this approach is valid
also in the two-dimensional case.

Next we want to test how our method works when the
number of bonds is increased, i.e. when the network becomes
more rigid. To this aim we study several configurations
with increasing numbers of bonds per particle. As before,
these were the largest percolating clusters of equilibrated
configurations of square well particles above the critical
temperature. As a matter of fact the essence of the method,
and one of the aims of this paper, is that the fraction of
floppy modes depends solely on the number of bonds in the
system. Configurations with different bonding patterns but the
same number of bonds per particle Nb are expected to behave
similarly. We expect that approaching a number of bonds per
particle equal to dimensionality, the fraction of floppy modes
vanishes. The results for the 3D case are presented in figure 5.
As expected, the height of the plateau decreases when the
network gets more structured. For each case, regardless of
the particles’ spatial distribution, the fraction of floppy modes,
represented by the plateau, continues to follow the relation
f (3D)

f = 3 − Nb/N . The area below the �-independent part of
2λ〈∑i (ri − r̄i )

2〉λ/N is expected to vanish for Nb/N � 3 and
we will show how this correlates to the entropy associated with
the floppy modes.

The same reasoning can be followed for the 2D case.
In figure 6 we show three systems of discs with increasing
bonding. As for the 3D case we can see that the plateau height
is again the fraction of floppy modes, i.e. f (2D)

f = 2 − Nb/N .
At this point, it must be stressed that the range for which we
can vary the number of bonds per particle is narrower than
in the 3D case since it can vary between Nb/N = 1 and

4
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Figure 5. The mean square displacement (2βλ〈∑i (ri − r̄i)
2〉λ/N)

for � = 10−3 for various bonding patterns. The dashed lines
represent the fractions of floppy modes ff = 3 − Nb/N . The curves
correspond to: Nb/N = 1.03 (circles), Nb/N = 1.30 (circles),
Nb/N = 1.68 (square), Nb/N = 2.12 (triangle up) and
Nb/N = 2.61 (triangle left).

Nb/N = 2. Below the lower bound the system is disconnected
while above the upper one it is overconstrained. Differently
from the three-dimensional case, the square well system in
2D has a strong tendency to crystallize. The configurations
that are obtained in this way are always overconstrained,
i.e. Nb/N > 2. Consequently we took these configurations
and we started deleting particles until the desired number of
bonds was obtained in the largest percolating cluster. This was
used as the initial configuration in the simulations. The surface
density (N/L2) ranges between 0.09 and 0.34, with the number
of particles between 52 and 207. Also for the 2D case the
scenario is confirmed; the area below 2βλ〈∑i(ri − r̄i )

2〉λ/N
that gives rise to the floppy entropy tends to disappear as the
number of bonds per particle is equal to the dimensionality,
i.e. Nb/N � 2.

So far we have shown that an outcome of the LF method
is the possibility of counting floppy modes: now that we have
found a convincing way of separating the vibrational modes
(those that are along the direction joining the centers of two
bonded particles) from the floppy modes (those that come from
fixed distance rotations) we can see how this separation can be
used in the calculation of their relative entropies, focusing, in
particular, on the one coming from the former.

The possibility of separating in a precise way the volume
of phase space associated with vibrational modes and the
one associated with floppy modes allows us to also evaluate
the (�-independent) volume in configuration space sampled
by a specific bonding pattern when all bond distances are
fixed. This volume corresponds to the free rolling motions
of the particles with no bond breaking or forming and it is
essentially the basin volume accessible to the Baxter model. It
is interesting to investigate the dependence of this quantity on
the number of bonds, since one expects that, on increasing the
connectivity, the entropy of the floppy modes should decrease.
Before proceeding, however, we want to divide effectively the
basin entropy, equation (1) into two parts. For this reason, it is
natural to break the integrand of equation (1), for small enough

Figure 6. The same as figure 5 for the 2D case. The dashed lines
represent the fractions of floppy modes ff = 2 − Nb/N . The curves
correspond to: Nb/N = 1.27 (circles), Nb/N = 1.38 (circles) and
Nb/N = 1.51 (square).

�, into two parts:

2βλ

〈
∑

i

(ri − r̄i )
2

〉

λ

/

N = ffαf(λ) + fvαv(λ) (7)

where α(λ) are two generic functions, to be evaluated
numerically, sharing the property

α f ;v(λ) =
{

1 λ → ∞
0 λ → 0

(8)

and keeping in mind that ff + fv = d . The sum expressed by
equation (7) is represented schematically in figure 7. The curve
2βλ〈∑i(ri − r̄i )

2〉λ is split into two parts: the first one ffαf(λ)

is the �-independent part while the second one ( f αv(λ)) is
the �-dependent one. In the Baxter limit, � → 0, only the
former will remain since all the entropy comes from the floppy
modes. By equation (7), we can now divide the entropy of the
basin into two contributions:

σ = σfloppy + σvib (9)

where the two terms are given by

σfloppy = 1

2
ff

(

−2β

d
fE (T, λ∞) +

∫ ln(λ∞)

−∞
αf(λ) d ln λ

)

σvib = 1

2
fv

(

−2β

d
fE (T, λ∞) +

∫ λ∞

o
αv(λ) d ln λ

)

(10)
where fE (T, λ∞) is the free energy of the Einstein reference
system1.

We can now calculate the entropy associated with the
floppy modes by equation (10) for the different cases discussed
before. Clearly we expect that, when Nb/N → d , the entropy
vanishes. The results both for the 2D as well as for the 3D
cases are presented in figure 7. For the 3D case, the floppy
entropy goes to zero as a power law σfloppy ∝ f 3

f . The value of

1 The free energy of the reference system is indeed different for a simple
Einstein crystal since the center of mass is fixed. We used the correction due
to such a constraint both for the 3D and for the 2D cases.

5
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Figure 7. (Top) A graphical representation of equation (7) (see the
text for details). (Bottom) The floppy entropy per particle σfloppy as a
function of the fraction of floppy modes ff = d − Nb/N for the 2D
and 3D cases. The letters refer to figures 5 and 6.

the exponent suggests that not only the number of modes but
also the floppy entropy per mode vanishes with a power law
close to ff = 0. It is interesting to observe that. at the state
point where Nb ≈ 3N , the full entropy of the system would
be given only by the logarithm of the number of topologically
different bonding patterns, since the vibrational modes are not
present in the limit of � → 0. For the 2D case a different
trend emerges. In this case, the floppy entropy goes to zero
as a power law of unitary exponent σfloppy ∝ ff. This implies
that, while the fraction of floppy modes is counted in a similar
way in the two cases, i.e. ff = d − Nb/N , the way the floppy
entropy varies going to the overconstrained limit does depend
on the dimensionality in a non-trivial way. The reason is still
not completely clear and one interesting direction would be to
test higher dimensions.

4. Conclusions

In this paper we have discussed a method to enumerate the
number of floppy modes in networks of particles with no
directional bonds. This method derives directly from the
Ladd–Frenkel scheme introduced to evaluate the free energy
of solids [19]. This approach has been already proven to be
useful for the calculation of the statistical properties of the

potential energy landscape for systems interacting with square
well interactions [17, 18]. The new results comes from the fact
that, when taking the limit of the range of the square well going
to zero, i.e. the Baxter limit, a system of spheres (or discs) loses
those degrees of freedom associated with the vibrations along
the directions joining the centers of the particles and it is left
only with those associated with the particles rolling on each
other at fixed distance σ . These modes are the floppy modes
of the system. This intuitive picture is then reflected in the
mean square displacement with respect to the reference points
that is the integrand in the LF thermodynamic integration. A
clear splitting of this function allows us to divide it into �-
independent and �-dependent parts. The former is associated
with the floppy modes and shows a plateau whose height is
exactly related to the number of bonds of the system and
that counts the fraction of floppy modes. We have been able
to establish the entropy associated with the floppy modes,
a task that is not possible with the technique that involves
direct counting by geometric algorithms [22, 23]. We have
found that, when the number of bonds per particle goes to the
dimensionality of the system, the floppy entropy goes to zero—
as expected for a system that is overconstrained. The method
works both for 3D and 2D. More specifically, the fraction of
floppy modes has the same functional dependence while the
floppy entropy σfloppy goes to zero with a power law with an
exponent that depends on dimensionality.

In conclusion, we have presented a method to evaluate
the fraction of floppy modes and their entropy for any specific
bonded configuration, a method which can be used in studies
of the rigidity of hard particle systems [22]. It would be
of great interest to test if this method can be extended to
systems with directional interactions. Rigidity in this kind
of system is particularly important and has given interesting
results with the geometric approach for manganites [24] as
well as for the internal structure of proteins [25]. Indeed, the
LF method can be extended to molecular systems with non-
isotropic potential [19] and we are investigating if the present
approach for the enumeration of floppy modes can be extended
as well.
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